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Abstract

In this paper, a new kind of graph on a ring is introduced and investigated. Let R be a ring with unity. Semisimple-
intersection graph of a ring R, denoted by GS(R), is an undirected simple graph with all nonzero ideals of R as vertices and two
distinct vertices I and J are adjacent if and only if I∩ J is a nonzero semisimple ideal of R. In this article, we investigate the basic
properties of these graphs to relate the combinatorial properties of GS(R) to the algebraic properties of the ring R. We determine
the diameter and the girth of GS(R). We obtain some results for connectedness and bipartiteness of these graphs, as well as give
a formula to compute the clique numbers of GS(R). We observed that the graph GS(R) is complete if and only if every proper
ideal of R either simple or semisimple and every pair of ideals in R have non-zero intersection.
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1. Introduction

The study of algebraic structures, using the properties of graph theory, tends to an exciting research
topic in the last decade. Bosak in 1964 [7] introduced the concept of the intersection graph of semigroups.
In 1988, Istvan Beck [5] proposed the study of commutative rings by representing them as graphs, named
zero divisor graph. These zero divisor graphs marked the beginning of an approach to studying commu-
tative rings with graphs. Similarly, there is several graphs assigned to modules and semirings [2], [3], [4].
In 2009, the intersection graph of ideals of a ring was considered by Chakrabarty, Ghosh, Mukherjee and
Sen [8]. The intersection graph of ideals of a ring R is a graph having the set of all nonzero ideals of R as
its vertex set and two distinct vertices I and J are adjacent if and only if I∩ J is non-trivial (non-zero). The
intersection graph of ideals was studied by a large number of mathematicians, in which they obtained
many of its properties and linked them to the properties of rings as demonstrated in [1], [9], [11], [12],
[13], [14]. In this paper, we introduce semisimple-intersection graphs of ideals of rings as the following.

Definition 1.1. Let R be a ring with unity. The semisimple-intersection graph of R, denoted by GS(R),
is defined to be a simple graph whose vertices are the nonzero ideals of R, and two vertices I and J are
adjacent, and we write I− J, if and only if I∩ J is a nonzero semisimple ideal.
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For example, consider the ring Z4. The nonzero ideals of Z4 are Z4 and 2Z4 ∼= Z2. Obviously,
GS (Z4) is Z4 − 2Z4. Clearly, the semisimple-intersection graph is a subgraph of the intersection graph
of ideals of R. We study several properties of this graph such as connectedness, regularity, girth, cliques,
the ”bipartite” property. Some preliminaries from ring theory and graph theory are listed in Section 2.
In Section 3, we show that the girth of GS(R) equals one of the three values 3,4 , or ∞. We also show
that the diameter of GS(R) does not exceed 4 and never equals 3 . In Section 4 , we give explicit formulas
to compute the clique number of GS(R). Besides, a necessary and sufficient conditions for GS(R) to be
bipartite are provided. We give many examples to illustrate the concepts discussed here, and provide
counterexamples for expected results.

2. Preliminaries

This section presents a fast review of rings and graphs that are important in this work. All notions of
graph theory presented here could be found in [6], also, all notions of ring theory presented here could be
found in [10]. In this paper, all rings are assumed to be nonzero rings with unity and are not necessarily
commutative. Besides, the ideals are considered to be left ideals. We first start with some preliminaries
from Ring Theory.

Definition 2.1. An ideal I of a ring R is said to be simple (or minimal) if I and {0} are the only ideals
included in I.

Definition 2.2. The direct sum of simple ideals of a ring R is called a semisimple ideal. We call each
simple ideal in the decomposition of a semisimple ideal, a component.

Obviously, a simple ideal is semisimple with one component. On the other hand, every ideal of a
semisimple ideal is semisimple.

Definition 2.3. The socle of R, denoted by Soc(R), is defined to be the sum (precisely, the direct sum) of
all nonzero simple ideals of R. If R = Soc(R), we call R a semisimple ring.

Definition 2.4. A proper ideal I of a ring R is said to be maximal if I is not contained in another proper
ideal of R.

Definition 2.5. A ring R is said to be Artinian if it satisfies the descending chain condition on ideals.

Theorem 2.6. A ring R is Artinian if and only if every nonzero ideal contains a nonzero simple ideal.

As a direct corollary from Theorem 2.6, semisimple rings are Artinian.
Next, we turn to preliminaries from Graph theory concerning undirected graphs. In what follows, G

indicates an undirected graph. The number of vertices of G is called the order the graph G. The set of
vertices of G is denoted by V[G]. If two vertices u and v are adjacent, we express that symbolically by u−
v.

Definition 2.7. Let v be a vertex in G. The neighborhood N(v) of v is the set of all vertices adjacent to v,
i.e., the set of all vertices each of which is linked to v by an edge. If G is a simple undirected graph, then
v /∈ N(v). If N(v) = ∅, then v is an isolated vertex.

Definition 2.8. The degree of a vertex v of G is the number of edges incident to v, i.e., going out of v.
The degree of v is denoted by degG(v) (or deg(v) if there is no confusion with the underlined graph).
The minimum of the degrees of the vertices is denoted by δ(G), while the maximum of the degrees of the
vertices is called the degree of the graph and is denoted by ∆(G).

When G is a simple graph, then deg(v) = |N(v)|, where |N(v)| means the cardinality of N(v). So, v is
isolated if and only if deg(v) = 0.
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Definition 2.9. A graph whose vertices have equal degrees is called a regular graph. A graph G is regular
if and only if ∆(G) = δ(G).

Definition 2.10. Let v and u be two vertices of G. The length of a path between v and u is the number
of edges forming the path. The distance d(u, v) between v and u is the length of a shortest path between
them. The diameter of G, denoted by diam(G), is defined to be the supremum of the set {d(u, v) : u, v ∈
V[G]}.

Definition 2.11. A graph G is path connected if there is a path between any two vertices of G.

Definition 2.12. A graph is said to be complete if it is a simple graph and every pair of vertices are
adjacent. The complete graph on n vertices is denoted by Kn.

Definition 2.13. A subgraph of G which is a complete graph is called a clique of G. The order of a largest
clique (i.e., a clique with the largest number of vertices) is called the clique number of G and it is denoted
by ω(G).

Definition 2.14. By the girth of G, we mean the length of a shortest cycle in G. The girth of G is denoted
by gr(G). If G has no cycles, then we write gr(G) = ∞.

Definition 2.15. A simple graph G is named bipartite if we can partition V[G] into two disjoint nonempty
subsets (each subset is called a part) such that the vertices belonging to the same subset are not adjacent
to each other. A complete bipartite graph is a bipartite graph where each vertex in one part is adjacent to
each vertex in the other part. A complete bipartite graph is denoted by Km,n, where m is the cardinality
of one part and n is the cardinality of the other part.

3. Connectivity, Diameter and Girth of GS(R)

In this section, we study the connectivity and girth of GS(R). Also, we determine the diameter of
GS(R). In addition, we give the necessary and sufficient conditions for GS(R) to be a complete graph.

Recall that a null graph is a graph whose vertices are not adjacent to each other (i.e., edgeless graph).

Theorem 3.1. The graph GS(R) is a null graph if and only if R is a simple ring or R has no nonzero simple ideals.

Proof. Assume GS(R) is a null graph. Suppose for contrary that R is not simple and it contains a nonzero
simple ideal I, so I is semisimple. Then R− I and hence GS(R) is not null, which is a contradiction to the
hypothesis ” GS(R) is a null graph”. The converse is easy.

Example 3.2. GS(Z) and GS (Z2) are null.

Remark 3.3. In GS(R), I−R if and only if I is a nonzero semisimple (or simple) ideal of R. So the subgraph
consisting of R with all nonzero simple ideals of R is a star graph with center R, and hence deg(R) equals
the number of nonzero simple ideals ideals of R. Thus, if R is semisimple with n components, then
deg(R) = n. On the other hand, if I is a nonzero simple ideal of R and J is an ideal of R, then I− J if and
only if I ⊊ J. Moreover, every pair of different nonzero simple ideals is not adjacent, or equivalently, the
subgraph of GS(R) consisting of nonzero simple ideals is a null graph.

Next, we study the cycles of GS(R). We show that the cycles with length at least 4 has only two special
patterns. Afterward, we demonstrate that the girth of GS(R) is either ∞, 3, or 4 .

Theorem 3.4. The graph GS(R) has a cycle of length 3 if and only if GS(R) contains at least two adjacent non-
semisimple ideals.

Proof. Assume that the graph GS(R) has a cycle of length 3, say I− J− K− I. By Remark 3.3, at most
one of the vertices is semisimple. So, at least two of the vertices in this cycle are adjacent non-semisimple
ideals of R. For the converse, let I and J be two different nonzero non-semisimple ideals such that I∩ J is
nonzero semisimple. Then we have the cycle I− J− I∩ J− I.
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Theorem 3.5. If the graph GS(R) has a cycle, then either gr (GS(R)) = 3 or gr (GS(R)) is even.

Proof. Assume that GS(R) has the cycle I1 − I2 − . . .− In − I1, and n > 3, with the least length. By Remark
3.3 and Theorem 3.4, if two vertices in the cycle are adjacent, then one of them is nonzero semisimple and
the other is non-semisimple. In other words, the vertices of the cycle alternate between semisimple and
nonsemisimple ideals. Without loss of generality, assume I1 is semisimple. Then I2 is not semisimple, I3
is semisimple, I4 is not semisimple, and so on. Thus, for each 1 ⩽ k ⩽ n, Ik is semisimple if k is odd,
and Ik is not semisimple if k is even. If n is odd, then In is semisimple and this implies In+1 = I1 is
not semisimple which number of contradicts the assumption that I1 is semisimple. We conclude that n is
even. Since the length of a cycle equals n, the its vertices, we get that the length of the cycle is even. As a
result, any cycle in GS(R) has either a length of 3 or has an even length. So, gr (GS(R)) = 3 or gr (GS(R))

is even.

Corollary 3.6. Let R be a semisimple ring. If R has more than two components, then gr (GS(R)) = 3. Otherwise,
gr (GS(R)) = ∞.

Proof. Assume R has at least three components. Let I⊕ J⊕ K be a semisimple ideal of R. Then I⊕ J and
J⊕ K are nonzero different non-semisimple ideals whose intersection is the simple ideal J. By Theorem
3.4, GS(R) has a cycle of length 3 , and hence gr (GS(R)) = 3. The rest of the proof is easy.

Remark 3.7. The proof of Theorem 3.5 displays a technique to build a cycle of a shortest length more than
3 as illustrated in the next example.

Example 3.8. Let R = I⊕ J⊕K⊕ T be a semisimple ring with 4 components. Then P1 : I− I⊕ J⊕ K− J− I⊕ J− I

and P2 : I⊕ T − J⊕ T − I⊕ J− I⊕ T are two different cycles of length 4 . Notice that P1 was constructed using
the technique applied in the proof of Theorem 3.5; that is the vertices of P1 alternate between semisimple and non-
semisimple ideals. However, P2 was built in different way where all its vertices are not simple ideals.

Example 3.9. Given the ring Z4 ⊕ Z2, the cycle Z4 ⊕ Z2 − 0 ⊕ Z2 − Z2 ⊕ Z2 − Z2 ⊕ 0 − Z4 ⊕ Z2 is a shortest
cycle in GS (Z4 ⊕ Z2). Thus, gr (GS (Z4 ⊕ Z2)) = 4.

The next theorem is a natural extension of the preceding work.

Theorem 3.10. Let R be a ring with the graph GS(R). Then gr (GS(R)) ∈ {3, 4,∞}.

Proof. According to Theorem 3.4, if R has no nonzero semisimple ideals, or R is simple, then gr (GS(R)) =∞. Take now that R includes exactly one nonzero semisimple ideal I. If I is a maximal ideal (which is
possible if all elements of R outside I are units), then GS(R) is just R− I and henceforth gr (GS(R)) = ∞.
If I is not a maximal ideal, then I is included in proper non-semisimple ideals. At this point, if I is
included in a unique proper non-semisimple ideal J, then R − I and J − I are the only paths in GS(R)
and so gr (GS(R)) = ∞. However, if I is included in more than one proper non-semisimple ideal, then
either there are two proper non-semisimple ideals intersect at I, which implies by Theorem 3.4 that
gr (GS(R)) = 3, or no two proper non-semisimple ideals intersect at I, which implies GS(R) is a star graph
with center I and thus gr (GS(R)) = ∞. Next, suppose that R has at least two different nonzero semisimple
ideals. Let I and J be two different nonzero semisimple ideals. We distinguish between two cases. In the
first case, suppose R = I⊕ J. By Corollary 3.6, gr (GS(R)) = ∞. In the second case, suppose that R ̸= I⊕ J.
Then, the cycle R− I− I⊕ J− J− R is a cycle of length 4 . The latter cycle has the least length unless R

possesses two different non-semisimple ideals whose intersection is a nonzero semisimple ideal, which
yields by Theorem 3.4 the existence of a cycle of length 3 .

Lemma 3.11. The distance between two nonzero simple (or semisimple) ideals in GS(R) is 2.

Proof. Let I and J be two nonzero simple ideals of R. Then I and J are not adjacent, however, they are
connected by the path I− R− J which is a shortest path between I and J. Thus, d(I, J) = 2. Now, assume
I and J are two semisimple ideals of R. Then either the path I− R− J or the path I− I ∩ J− J which is a
shortest path between I and J. This completed the proof.
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Theorem 3.12. The graph GS(R) is path connected if and only if R is an Artinian ring.

Proof. Suppose GS(R) is path connected and R is not simple. Let I be a nonzero ideal of R. Now, there is
a path from I to R. If the path has a length equal to 1 , then I− R and hence I is a semisimple ideal. If
the path has a length of at least 2 , then there exists an ideal J,R such that J− I. Thus, I ∩ J is a nonzero
semisimple ideal contained in I. Thus there is K is a nonzero simple ideal with K ⊆ I ∩ J ⊆ I. As each
nonzero ideal contains a nonzero simple ideal, we conclude that R is Artinian.

For the reverse, assume R is an Artinian ring. Let I and J be two nonzero ideals. Now, there is nonzero
simple ideals K and L with K ⊆ I besides L ⊆ J. The path I−K−K⊕ L− L− J connects I and J. So, GS(R)
is path connected.

Corollary 3.13. If R is Artinian, and I and J are nonzero ideals, then 1 ⩽ d(I, J) ⩽ 4.

Proof. Suppose R is Artinian, and I and J are nonzero ideals. By Theorem 3.12, d(I, J) ⩾ 1. We consider
different cases. In the first case, assume that both ideals are simple, by Lemma 3.11, we have d(I, J) = 2.
In the second case, assume exactly one of them, say I, is simple. If I ⊂ J, then I− J and therefore d(I, J) =
1. Though, if I ⊈ J, then I∩ J = 0. Let 0 ̸= K ⊊ J be a simple ideal. Then, I− I⊕K− J is the shortest path
between I and J. So, d(I, J) = 2. In the third case, assume neither of I and J is simple. If I ∩ J is nonzero
semisimple, then I− J and thus d(I, J) = 1. If I ∩ J is not semisimple, then it contains a nonzero simple
ideal K. The path I−K− J is the shortest path between I and J and hence d(I, J) = 2. If I∩ J = 0, then the
path I− K− K⊕ L− L− J is the shortest path between I and J, where K and L are nonzero simple ideals
of R contained in I and J, respectively. So, d(I, J) = 4.

Recall that a path component of a graph is the largest path connected subgraph (i.e., a connected
subgraph that is not a subgraph of another connected subgraph). A graph may have more than one path
component. A graph is connected if and only if the path component is unique. In addition, the diameter
of a graph equals the supremum of the diameter of its path components.

Theorem 3.14. In GS(R), all the vertices with positive degree lie in one path component which is the path component
containing R. The rest of components are isolated vertices.

Proof. A discussion analogous to that in the proof of Corollary 3.13 leads us to the fact that any vertex of
positive degree is connected to R by a path of length less than 3 .

Definition 3.15. The component of R mentioned in Theorem 3.14 is named the R-component of GS(R).

According to Theorem 3.14, we can, in many situations, identify GS(R) with its R-component, since
we can carry the discussion of a disconnected GS(R) to its R-component. The proof of the next corollary
follows easily from Corollary 3.13 and Theorem 3.14.

Corollary 3.16. 1 ⩽ diam (GS(R)) ⩽ 4. Besides, diam (GS(R)) = 1 if and only if the R-component of GS(R) is a
complete graph consisting of at least two vertices.

Theorem 3.17. The graph GS(R) is complete if and only if every proper ideal of R either simple or semisimple and
every pair of ideals in R have non-zero intersection.

Proof. Assume that GS(R) is complete. Let I be an ideal of R. By completeness, we have I− R and thus
I is semisimple. Let I and J be an ideals of R. Thus, I ∩ J is semisimple, and hence I ∩ J ̸= (0). For the
converse, assume that I and J be an ideals of R. By assumption I and J are simple or semisimple ideals.
Thus, I∩ J is semisimple ideal. Hence, the graph GS(R) is complete.

The next corollary is a straight forward result from Theorem 3.17.
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Corollary 3.18. If R is a semisimple ring, then GS(R) is not complete.

Example 3.19. GS (Z4) is K2, while GS (Z2 ⊕ Z2) is not complete.

We have seen so far that if GS(R) is not a null graph, then 1 ⩽ diam (GS(R)) ⩽ 4. Surprisingly,
diam (GS(R)) never reaches 3 as demonstrated in the next theorem.

Theorem 3.20. We have diam (GS(R)) ̸= 3.

Proof. Suppose GS(R) is not a null graph. By contrary way. Assume there exist two nonzero ideals of R
such that d(I, J) = 3. So that the shortest path connecting I and J has a length equal to 3 . Let I−K− L− J

be such a shortest path. Thus we have I is not adjacent to J, J is not adjacent to K, I is not adjacent to L,
and at least one of K and L is not simple. We have I ∩ K and J ∩ L are nonzero semisimple ideals. Also,
I ∩ J∩ L = 0 (because if not, then the simplicity of J ∩ L implies I ∩ J ∩ L = J ∩ L, which in turn implies
J∩ L ⊆ I, which yields that I and J are connected by the path I− (J∩ L) − J of length 2 . This contradicts
that d(I, J) = 3. Similarly, we obtain that J ∩ I ∩ K = 0. Now, let T = (I ∩ K)⊕ (J ∩ L). Then I ∩ T = I ∩ K

and J∩ T = J∩ L which are nonzero semisimple ideals. So, we have the path I− T − J is a path connecting
I and J of length equal to 2 , which is a illogicality to the assumption d(I, J) = 3. In conclusion, we get
that d(I, J) ̸= 3.

4. The Bipartite Property and Cliques of GS(R)

In this section, we study the clique number of GS(R). Also, here the conditions which make GS(R)
bipartite are studied. Since the null graph is obviously bipartite, the importance here in our consideration
is the non-null GS(R). Recall that GS(R) is not null if and only if R possesses a proper nonzero simple
ideal.

We begin with the following corollary which is an outcome of Section 3.

Corollary 4.1. If 3 < gr (GS(R)) < ∞, then GS(R) is bipartite.

Proof. Assume 3 < gr (GS(R)) < ∞. Following the similar argument of the proof of Theorem 3.5, we get
that no nonzero simple ideals are adjacent to each other and no non-simple ideals are adjacent to each
other. Thus, the graph GS(R) is bipartite with parts W1 consisting of all nonzero simple ideals of R, and
W2 consisting of all non-simple ideals of R.

Example 4.2. In Example 3.9, GS (Z4 ⊕ Z2) is bipartite by Corollary 4.1.

Definition 4.3. Let I ̸= 0 be an ideal of R. By GS(R, I), we mean the subgraph of GS(R) whose vertices are
I and all vertices adjacent to I along with the edges incident to these vertices. We call GS(R, I) the local
semisimple-intersection graph of I.

Theorem 4.4. The graph GS(R) is bipartite if and only if GS(R, I) is a star graph with center I, for every nonzero
simple ideal I of R.

Proof. Assume GS(R) is a bipartite graph. Without lose of generality, assume GS(R) is not a null graph.
Let V and W be a bipartition. Let I be a nonzero simple ideal of R. Suppose that I ∈ V . Then none
the vertices of N(I) belongs to V and therefore they belong to W. Thus, all vertices of N(I) are pairwise
nonadjacent. This means, that GS(R, I) is a star graph with center I.

For the converse, assume that GS(R, I) is a star graph with center I, for every nonzero simple ideal
I ⊆ R. Let V be the set of all nonzero simple ideals of R, and W be the set of the remaining (non-simple)
ideals of R. By Remark 3.3, we have the vertices of V are not adjacent to each other. On the other hand, let
J,K ∈ W. Assume, for contrary, that J−K. Then, J∩K is a nonzero simple ideal. Hence, J,K ∈ V [GS(R, J∩
K)] = N(J∩K), which contradicts that GS(R, J∩K) is a star graph with center J∩K. Thus, we obtain that
any two vertices of W are not adjacent. Consequently, GS(R) is bipartite with bipartition V and W.
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In General, a bipartite graph may have more than one bipartition. However, the existence of the
(V ,W)-bipartition of GS(R), where V is the set of all nonzero simple ideals of R, and W is the set of all
non-simple ideals of R, is necessary and sufficient for GS(R) to be bipartite. We prove this in the next
corollary, but before we do that we need to draw the attention of the reader to the fact that if an ideal
does not include any simple ideal, then it is an isolated vertex which can be freely added to any part of
a bipartition of GS(R). So, what maters when considering by partitions is the nonzero simple ideals and
ideals containing anyone of them.

Corollary 4.5. Assume GS(R) is not null. Then, GS(R) is bipartite if and only if the (V ,W)-bipartition of GS(R)
exists, where V is the set of all nonzero simple ideals of R, and W is the set of non-simple ideals of R.

Proof. Assume GS(R) is bipartite. Let X and Y be a bipartition. Since GS(R) is not null, then R contains
at least one nonzero simple (or semisimple) ideal. Without loss of generality, assume R ∈ Y. Since R is
adjacent to every nonzero simple and semisimple ideals as Remark 3.3 states, then all nonzero simple
ideals belong to X. Thus, all non-semisimple ideals containing simple ideals must belong to Y. The
isolated vertices are distributed randomly to X and Y. Now if we move all isolated vertices from X to Y,
the new bipartition is the (V ,W)-bipartition with V is X after deleting the isolated vertices and W is Y

plus all the isolated vertices. The proof of the converse is quite obvious.

Recall that an ideal I of a ring R is large (or essential) if I ∩ J ̸= 0, for every nonzero ideal J of R. In
what follows, when we assume GS(R) is bipartite, we consider the (V ,W)-bipartition.

Theorem 4.6. Suppose GS(R) is not null and bipartite. Now the next statements are equivalent:

(1) GS(R) is complete bipartite.

(2) The intersection of all non-simple ideals is Soc(R).

(3) Soc(R) is an essential ideal.

(4) R is Artinian and diam (GS(R)) ⩽ 2.

(5) GS(R) is path connected and diam (GS(R)) ⩽ 2.

Proof. The proof is easy when R contains only one nonzero simple ideal because GS(R) is a star graph
and then (1) to (5) hold directly. Therefore, we assume that GS(R) contains more than one nonzero simple
ideal. By Corollary 4.5 , there exists the (V ,W)-bipartition consisting of the set V of all nonzero simple
ideals and the set W consisting of all non-simple ideals.
1 ⇒ 2 : Suppose GS(R) is complete bipartite. Then every non-simple ideal is adjacent to every simple
ideal. Hence, every non-simple ideal contains the socle of R. Thus, Soc(R) is included in the intersection
of all non-simple ideals. Now, Soc(R) is not simple and hence it includes the intersection of all non-simple
ideals. At this point, we conclude that Soc(R) is equal to the intersection of all non-simple ideals.
2 ⇒ 3 : The proof is trivial.
3 ⇒ 4 : Assume that Soc(R) is an essential ideal of R. The proof that R is Artinian is quite easy and
well known in the literature. We only need to show that diam (GS(R)) ⩽ 2. By Lemma 3.11, the distance
between any two nonzero simple (or semisimple) ideals is 2 . Let I ∈ V and J ∈ W. If I ⊊ J, then I− J

and d(I, J) = 1. Assume now I ⊈ J. Since Soc(R) is large, then Soc(R)∩ J ̸= 0, which means that J contains
a nonzero simple ideal K ̸= I. Then I− I⊕ K− J is a path between I and J of length 2 . Next, assume I,
J ∈ W. We have I∩ J is not simple. Since Soc(R) is essential, the ideal I∩ J contains a nonzero simple ideal
K. Now the path I−K− J between I and J has length 2.
4 ⇒ 5 : Apply Theorem 3.12.
5 ⇒ 1 : Assume GS(R) is path connected such that diam (GS(R)) ⩽ 2. Let I ∈ V and J ∈ W. Then, there
exists a path connecting I and J. By assumption, the length of the shortest path connecting I and J equals
1 or 2 . However, if the length of this shortest path is 2 , then we get a contradiction to the hypothesis that
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says ” GS(R) is bipartite”. So, the length of this shortest path is 1 . That is, I is adjacent to J. This ends
the proof.

Definition 4.7. Let I be a nonzero semisimple ideal of R. We say that the nonzero ideals J and K are
adjacent through I if J∩K = I.

Proposition 4.8. Every clique of GS(R) contains at most one nonzero simple ideal.

Proof. The proof is straightforward from Remark 3.3.

It follows from Proposition 4.8 that there are two types of cliques in GS(R). The first type of cliques
contains no simple ideals, while the second type of cliques contains exactly one nonzero simple ideal. The
next example exhibits these types of cliques.

Example 4.9. Let R = I⊕ J⊕K be a semisimple ring. Then, the subgraph I⊕ J− J⊕K− I⊕K− I⊕ J is a clique
whose vertices are not simple ideals. However, the subgraph I⊕ J− I− I⊕ K− I⊕ J is a clique with one simple
nonzero ideal as Proposition 4.8 emphasizes.

In the next work, we are going to study each type of cliques in order to discover the clique number of
GS(R).

Theorem 4.10. Let Ω be a clique containing one nonzero simple (or semisimple) ideal I. Then Ω consists, beside
the vertex I, vertices in N(I) that are adjacent to each other through I.

Proof. Let J and K be two vertices in Ω. Then J ∩ K is nonzero simple. Since I− J and I− K, we get J,
K ∈ N(I) and I ⊆ J∩K. Thus, I = J∩K. The converse is obvious.

Corollary 4.11. Let Ω be a clique containing one nonzero simple ideal I. Then |V[Ω]| > 2 if and only if R < V[Ω]
and V[Ω] has at least two proper non-semisimple ideals (that are adjacent to I ).

Proof. Suppose V[Ω] contains at least 3 vertices. Since I must be among the vertices of Ω, by Theorem
4.10, the other vertices are non-simple ideals that are adjacent to each other through I. By Remark 3.3,
neither of the non-simple vertices equals R. The reverse is trivial.

Definition 4.12. [12] Let I be a nonzero simple ideal of R. Then, the largest clique of GS(R) containing I

is named the maximal clique induced by I.

Let I be a nonzero simple ideal of R. Then the clique I− R is always a maximal clique induced by I,
which we call the trivial maximal clique induced by I. It is not difficult to see from Corollary 4.11 that if
|N(I)| = 1, then the trivial maximal clique induced by I is the only maximal clique induced by I. However,
if |N(I)| > 1, Then there is another maximal clique induced by I which consists, in addition to I, of all
proper non-simple ideals in N(I) that are adjacent to each other through I. We denote this non-trivial
maximal clique by Ω(I). Notice that |V[Ω(I)]| ⩾ 2. Note that if I is semisimple but not simple ideal, we
have I− R is always a not clique in GS(R).

Example 4.13. In GS (Z4), the maximal cliques induced by the ideal 2Z4 are only the trivial maximal clique
2Z4 − Z4.

Example 4.14. In Example 4.9, Ω(I) is I− I⊕ J− I⊕K− I. Thus |Ω(I)| = 3.

5. Conclusion

In this paper, we have defined and studied an undirected graph GS(R), the semisimple-intersection
graph of a ring R where the vertex set all nonzero ideals of R and two distinct vertices I and J are adjacent
if and only if I ∩ J is a nonzero semisimple ideal. We observed that the graph GS(R) is complete if and
only if every proper ideal of R either simple or semisimple and every pair of ideals in R have non-zero
intersection. We studied girth, diameter, clique number, and bipartite property of the graph GS(R).
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